50 research outputs found

    A semi-induced subgraph characterization of upper domination perfect graphs

    Get PDF
    Let β(G) and Γ(G) be the independence number and the upper domination number of a graph G, respectively. A graph G is called Γ-perfect if β(H) = Γ(H), for every induced subgraph H of G. The class of Γ-perfect graphs generalizes such well-known classes of graphs as strongly perfect graphs, absorbantly perfect graphs, and circular arc graphs. In this article, we present a characterization of Γ-perfect graphs in terms of forbidden semi-induced subgraphs. Key roles in the characterization are played by the odd prism and the even Möbius ladder, where the prism and the Möbius ladder are well-known 3-regular graphs [2]. Using the semi-induced subgraph characterization, we obtain a characterization of K 1.3-free Γ-perfect graphs in terms of forbidden induced subgraphs. © 1999 John Wiley & Sons, Inc

    The domination parameters of cubic graphs

    Get PDF
    Let ir(G), γ(G), i(G), β0(G), Γ(G) and IR(G) be the irredundance number, the domination number, the independent domination number, the independence number, the upper domination number and the upper irredundance number of a graph G, respectively. In this paper we show that for any nonnegative integers k 1, k 2, k 3, k 4, k 5 there exists a cubic graph G satisfying the following conditions: γ(G) - ir(G) ≤ k 1, i(G) - γ(G) ≤ k 2, β0(G) - i(G) > k 3, Γ(G) - β0(G) - k 4, and IR(G) - Γ(G) - k 5. This result settles a problem posed in [9]. © Springer-Verlag 2005

    Independent domination in hereditary classes

    Get PDF
    AbstractWe investigate Independent Domination Problem within hereditary classes of graphs. Boliac and Lozin [Independent domination in finitely defined classes of graphs, Theoret. Comput. Sci. 301 (1–3) (2003) 271–284] proved some sufficient conditions for Independent Domination Problem to be NP-complete within finitely defined hereditary classes of graphs. They posed a question whether the conditions are also necessary. We show that the conditions are not necessary, since Independent Domination Problem is NP-hard within 2P3-free graphs.Moreover, we show that the problem remains NP-hard for a new hereditary class of graphs, called hereditary 3-satgraphs. We characterize hereditary 3-satgraphs in terms of forbidden induced subgraph. As corollaries, we prove that Independent Domination Problem is NP-hard within the class of all 2P3-free perfect graphs and for K1,5-free weakly chordal graphs.Finally, we compare complexity of Independent Domination Problem with that of Independent Set Problem for a hierarchy of hereditary classes recently proposed by Hammer and Zverovich [Construction of maximal stable sets with k-extensions, Combin. Probab. Comput. 13 (2004) 1–8]. For each class in the hierarchy, a maximum independent set can be found in polynomial time, and the hierarchy covers all graphs. However, our characterization of hereditary 3-satgraphs implies that Independent Domination Problem is NP-hard for almost all classes in the hierarchy. This fact supports a conjecture that Independent Domination is harder than Independent Set Problem within hereditary classes

    Satgraphs and independent domination. Part 1

    Get PDF
    AbstractA graph G is called a satgraph if there exists a partition A∪B=V(G) such that•A induces a clique [possibly, A=∅],•B induces a matching [i.e., G(B) is a 1-regular subgraph, possibly, B=∅], and•there are no triangles (a,b,b′), where a∈A and b,b′∈B.We also introduce the hereditary closure of SAT, denoted by HSAT [hereditary satgraphs]. The class HSAT contains split graphs. In turn, HSAT is contained in the class of all (1,2)-split graphs [A. Gyárfás, Generalized split graphs and Ramsey numbers, J. Combin. Theory Ser. A 81 (2) (1998) 255–261], the latter being still not characterized. We characterize satgraphs in terms of forbidden induced subgraphs.There exist close connections between satgraphs and the satisfiability problem [SAT]. In fact, SAT is linear-time equivalent to finding the independent domination number in the corresponding satgraph. It follows that the independent domination problem is NP-complete for the hereditary satgraphs. In particular, it is NP-complete for perfect graphs

    Dominant-matching graphs

    No full text
    We introduce a new hereditary class of graphs, the dominant-matching graphs, and we characterize it in terms of forbidden induced subgraphs

    Domistable graphs

    No full text
    corecore